TL neuro

June 3, 2016

Inhalation delivery of psychostimulants to rats using e-vape technology

Filed under: 4-MMC/Mephedrone, Cathinones, E-cigarettes, MDPV, Methamphetamine — mtaffe @ 4:03 pm

Although inhaled exposure of drugs is a prevalent route of administration for human substance abusers, animal models of inhaled exposure to psychomotor stimulants (cocaine, methamphetamine, synthetic cathinones, etc) are not commonly available. Inhaled use of methamphetamine is more common than other routes of administration in habitual and dependent users (Das-Douglas et al. 2008; Heinzerling et al. 2010; Wood et al. 2008) and the SAMHSA/TEDS treatment admission database for 2012 shows 4.7% of treatment seekers in the USA were admitted for smoked cocaine vs 2.2% for other routes of cocaine administration. There is limited evidence that people are using e-cigarettes for inhalation of methamphetamine (Evans 2014; Rass et al. 2015), “bath salts” (Johnson and Johnson 2014; Rass et al. 2015) and “flakka” (presumptively α-pyrrolidinopentiophenone; alpha-PVP) as reported (Anderson 2015).

We have therefore developed a method for the delivery of psychostimulant drugs to rats and evaluated the impact of methamphetamine (MA), 3,4-methylenedioxypyrovalerone (MDPV; “bath salts”) and 4-methylmethcathinone (4-MMC; mephedrone). The following paper describing our initial studies has been recently accepted for publication in Neuropsychopharmacology:

Locomotor stimulant and rewarding effects of inhaling methamphetamine, MDPV and mephedrone via electronic cigarette-type technology. Jacques D. Nguyen1, Shawn M. Aarde1, Maury Cole2, Sophia A. Vandewater1, Yanabel Grant1 and Michael A. Taffe1
1Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla, CA, USA
2La Jolla Alcohol Research, Inc, La Jolla, CA, USA

Schematic of the inhalation chamber

Schematic of the inhalation chamber

Our exposure model for this study involved a standard sized rat housing chamber with a sealed lid- these are commercially available for a variety of purposes. The chamber was plumbed for regulated airflow and incorporated the ability to deliver and exhaust the vapor from an e-cigarette type device. The overall approach for delivery to rodents is under patent to La Jolla Alcohol Research, Inc which has been instrumental in developing the equipment for our studies. This collaboration has resulted in a number of studies so far, this one is the second one to be published. The first paper described the effects of THC inhalation (blogpost). The company has also recently been awarded an SBIR Phase II Grant (R44 DA041967) to further develop and enhance commercialization of the device.

Control of the dose administered to the rat in this system is a key initial topic of investigation. We determined in this paper whether the dose can be altered with the manipulation of a number of variables. The concentration off the drug may be altered in the propylene glycol (PG) vehicle (aka “e-juice”)- our standard condition for this study was 100 mg/mL but effects from 12.5-200 mg/mL were also explored for different drugs. For the most part this study found concentration-dependent effects only across drugs (4-MMC was much less potent than MA or MDPV) when the puffing and inhalation duration was held constant. The puffing regimen and duration of inhalation exposure can be altered as well. In most of our studies we delivered 10-s vapor puffs with 2-s intervals between them every 5 minutes for durations of 10-40 min (approximately 0.125 ml was used in a 40 min exposure session). Varying the total duration from 10 to 30 min resulted in dose dependent effects of inhaling MA (12.5 mg/mL) or MA (12.5 mg/mL).

Vape decreases ICSS thresholds

A decrease in ICSS threshold was produced by inhalation exposure to 4MMC (200 mg/mL), MA (100 mg/mL) and MDPV (100 mg/mL). Similar effects were produced by i.p. administration of 4MMC (1.0mg/kg), MA (0.5 mg/kg) or MDPV (0.5 mg/kg). Significant differences from the respective Vehicle condition are indicated by *.

We present data on the intracranial self-stimulation reward paradigm in this paper. This is a model in which electrodes are implanted into the medial forebrain bundle of the rat and it is trained to respond for small deliveries of electrical current which has a rewarding or reinforcing effect. The procedure used for this study ramps the stimulation up and down during a session until the threshold necessary for the individual to experience a reinforcing effect is determined. Once the animals are trained to generate stable thresholds, they can be tested by administering drugs before the session. If a drug has a rewarding or reinforcing effect, it tends to lower the threshold below the baseline level. Here we show that all three drugs decrease reward thresholds in male rats. The reduction in the reward threshold was of a similar magnitude when drug was administered by injection or by vapor inhalation. This is a key indication that this procedure can generate reinforcing or rewarding levels of drug in the rats.

Activity rates after inhalation of  3,4-methylenedioxypyrovalerone (MDPV; 25,50,100mg/mL) or 4-methylmethcathinone (4MMC/mephedrone; 100, 200mg/mL).

Mean (N=13; + SEM) activity rates after inhalation of 3,4-methylenedioxypyrovalerone (MDPV; 25,50,100mg/mL) or 4-methylmethcathinone (4MMC/mephedrone; 100, 200mg/mL). Gray shaded symbols indicate a significant difference from PG vehicle at the corresponding time point. Base = pre-inhalation baseline.

Locomotor activity was measured after vapor inhalation using a radiotelemetry system that generates activity rates as counts per minute. In this figure we show the activity before and after inhalation of the PG vehicle and then three concentrations of MDPV and two concentrations of 4-methylmethcathinone (4-MMC, mephedrone) for 40 min. Locomotor activity was increased for 2-3 h after the initation of vapor for all three MDPV concentrations and for the 200 mg/mL concentration of 4-MMC. Similar effects were observed for MA and we went on to show that the dopamine D1-like receptor antagonist SCH23390 (10 ug/kg, i.p., prior to inhalation) blocked locomotor increases caused by inhalation of each drug. This is as would be expected, similar to the effect of SCH23390 on locomotor stimulant effects of these drugs when injected in rodents.

Wheel Activity after MDPV or MA

Mean (N=7; ± SEM) wheel activity of male rats after inhalation of methamphetamine (100 mg/mL in PG), MDPV (100 mg/mL in PG) or the PG alone for 40 minutes. Gray shaded symbols indicate a significant difference from PG. A significant difference from the 30 min time point within an inhalation condition is indicated with *, and a difference from MA with #, for corresponding time points.

Another study in the paper investigated effects of vapor inhalation of the MA and MDPV on wheel activity. Under vehicle treatment, rats run more on the wheel in the first 30 minutes and then run significantly less for the subsequent 90 min of a 2 h session. When allowed to use the wheel after vapor exposure to MA or MDPV, activity is initially suppressed and then rebounds as the session continues. Presumably, the initial suppression of wheel activity is related to the increase in chamber locomotor activity found in the radiotelemetry study- if the rats were running around the cage they might be unlikely to enter the wheels. In the study depicted, MDPV caused significantly more activity than vehicle inhalation 60-90 min after finishing the vapor inhalation. MA in this experiment did not increase activity compared with vehicle, however activity was significantly higher in the last thirty minutes than the first 30 min after MA inhalation. Additional data found no significant effects of 40 min of inhalation of either MDPV or MA at a 25 mg/mL concentration and a third study found elevations of wheel activity 90-120 min after a 20 min inhalation of MA (100 mg/mL). In total, the wheel activity data confirm dose-dependent effects on a second measure of locomotion.

Overall, this study is the first to demonstrate behavioral effects of e-cigarette type inhalation delivery of psychostimulants to rats. This further validates our model and encourages additional study of the risks of e-cigarette delivery of psychoactive substances in laboratory animal models.
J. D. Nguyen, S. M. Aarde, M. Cole, S. A. Vandewater, Y. Grant and M. A. Taffe. Locomotor stimulant and rewarding effects of inhaling methamphetamine, MDPV and mephedrone via electronic cigarette-type technology, 2016, accepted article preview 9 June 2016; doi: 10.1038/npp.2016.88 [ PublisherSite ][ PubMed ]

Funding and Disclosures for this paper: This work was funded by support from the United States Public Health Service National Institutes of Health (R01 DA024105, R01 DA024705, R01 DA035281 and R44 DA041967) which had no direct input on the design, conduct, analysis or publication of the findings. Subsets of these data were first presented at the Experimental Biology meeting in 2015 and the Annual Meeting of the Society for Neuroscience 2015. Development of the apparatus was supported by La Jolla Alcohol Research, Inc and MC is inventor on a patent for this device. SAV consults for La Jolla Alcohol Research, Inc.

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Create a free website or blog at

%d bloggers like this: