TL neuro

October 16, 2017

High ambient temperature facilitates MDMA self-administration

Filed under: IVSA, MDMA, Thermoregulation — mtaffe @ 1:02 pm

The following has recently been accepted for publication:

Aarde, S.M., Huang, P-K  and Taffe, M.A. High Ambient Temperature Facilitates The Acquisition Of 3,4-Methylenedioxymethamphetamine (MDMA) Self-Administration. Pharmacol Biochem Behav, 2017, in press.  [ Publisher Site ][ PubMed ]

This study was motivated by a finding from Cornish and colleagues in 2003 where they showed that rats trained to self-administer MDMA at 21 °C ambient temperature will significantly increase their drug intake when placed in a 30 °C ambient temperature. This finding was of interest to our lab because of our longstanding interest in the role of the body temperature response to MDMA. In brief, the effect of a given dose of MDMA at ~21-24 °C is generally to lower a rat’s body temperature whereas the same dose given at ~27-30 °C elevates body temperature. The typical laboratory ambient temperature of about 21-24 °C is actually somewhat cold for a rat since their point of thermoneutrality is up around 30 °C.  This led us to think that perhaps one of the reasons why MDMA is a poor reinforcer in the intravenous self-administration (IVSA) paradigm is because it lowers body temperature. If this effect is aversive to the rat, this may oppose the rewarding properties of the drug. Consequently, the Cornish finding may have illustrated increased IVSA due to a blunted hypothermia (but that study didn’t measure it). This rationale formed the basis for an entire Aim of a grant proposal which was submitted in original form in 2007 and eventually funded in 2011 (R01 DA024105-01A2).

In this figure from the paper we present the number of MDMA infusions (1.0 mg/kg/infusion) obtained by the groups of rats trained to self-administer under Cold (20 °C; N=12) or Hot (30 °C; N=11) ambient conditions in two-hour sessions. The schedule of reinforcement was FR5 for these studies meaning that each infusion required that the rat make five lever presses. As is obvious from the figure, the Hot group obtained more infusions of MDMA than did the Cold group. On session 16 only the drug-free vehicle was available and the increased responding (“saline bursting”) can be interpreted as a sign of drug-seeking behavior. This is particularly important for the Cold group given their very low (but consistent) numbers of infusions obtained. So to this point of the study, the behavior replicates and extends the work of Cornish and colleagues in 2003. They trained their rats in a lower ambient condition and then did post-acquisition tests at a higher ambient temperature and so the effect of ongoing experience in cold versus hot conditions could not be assessed. Interestingly, however, Feduccia and colleagues (2010) did a study much more like ours in design and failed to find any difference in the acquisition of IVSA in cold versus hot ambient conditions. There are a few procedural differences which may explain the difference in outcome but additional experiments would be required for firm conclusions. One potential difference is the selection of FR1 reward contingency which led to similar behavior in the MDMA groups and the groups allowed to self-administer saline only in that study. Although we did not have saline-only controls, our lever discrimination remained over 80% in both groups. In Aarde et al (2013) we ran a saline-only control group, pretrained to lever press for food at FR5, at normal laboratory ambient temperature (24 °C) and showed that lever discrimination breaks down significantly within the first 10 sessions of saline IVSA.

As outlined above, we were interested in the nature of the body temperature response during self-administration and how this might be changed by different ambient temperature conditions. Feduccia and colleagues had found no change in body temperature induced by MDMA IVSA at all, but their monitoring was via pre- and post-session rectal sampling. The temperature response to MDMA in rats is transient and it was likely that the sampling at 2 hours after the start of the session missed the dynamic response. This technique also requires handling the rats which can cause a stress response which may increase the body temperature. Our study used implanted radiotelemetry to observe the temperature response during the session. This adaptation of a figure from the paper presents 30 min averages (data collected every 5 minutes) of body temperature across the self-administration session and for one hour after the drug was no longer available. The daily responses are collapsed across blocks of 5-6 sequential training days. The takeaway here is that body temperature decreased in both Hot and Cold groups during the initial hour of the self-administration session and this response was gradually blunted in the Hot group across the self-administration training. The similar degree of hypothermia early in the acquisition phase and the course of tolerance versus drug intake in the Hot group was not consistent with our original hypothesis. It looked much more as though MDMA caused hypothermia under all training conditions and any attenuation of that response followed, rather than caused, increased drug intake over time.

To further probe the role of ambient temperature we next switched the temperature conditions and found that MDMA IVSA was unchanged within the groups. As if they’d been set on a preference trajectory. The failure to increase drug intake in the Cold group when placed in higher ambient temperature conditions was discordant with the original Cornish finding and we do not know why this might be the case. Most importantly, the Hot-trained group self-administered more drug in Cold ambient then did the Cold-trained group in Hot ambient and developed a more pronounced drop in body temperature. This showed that the ongoing self-administration training did not categorically alter the temperature response to MDMA in these animals.

The last study in the self-administering groups examined the effect of non-contingent administration of a range of MDMA doses (1-5 mg/kg, i.v.) on the body temperature response under Hot and Cold ambient temperature conditions. Up to this point, the animals self-selected their doses and so the interaction of dose with the temperature responses could not be easily disentangled. This last study found that hypothermia depended on dose, ambient temperature and the prior MDMA intake of the rat. Those individuals who self-administered very low amounts across the study (regardless of ambient temperature condition) were most sensitive to MDMA-induced hypothermia. Hypothermia was produced in both subgroups under Cold ambient, albeit to a greater degree in the animals with less cumulative MDMA intake. The takeaway from this part of the study is less clear cut. Clearly the hypothermic response to  MDMA under low ambient temperature conditions was only quantitatively, not categorically, altered in rats that self-administered more MDMA. Temperature responses under higher ambient temperature conditions were blunted- to the point that 3-5 mg/kg MDMA, i.v., did not change body temperature from baseline in the higher preference subgroup and while 2-3 mg/kg lowered body temperature in the lower-preference subgroup, 4-5 mg/kg did not.  [In general, the dose-effect relationship for MDMA-induced hypothermia does not reflect across Cold and Hot ambient temperatures. A high MDMA dose produces both less hypothermia under Cold conditions and increased hyperthermia under Hot conditions. Likewise, a moderate dose produces less hyperthermia in Hot conditions and more hypothermia in Cold ambient temperature conditions.] Thus, these data allow for the possibility that incremental blunting of the hypothermic response to MDMA may have some effect on sustaining IVSA behavior. Still, the overall thrust of this study suggests that the body temperature response is not a primary driver of self-administration of MDMA.

An additional study examined the effect of MDMA on intracranial self-stimulation (ICSS) reward in a different group of animals with no MDMA self-administration history. In ICSS the animal makes behavioral responses in response to small amounts of electrical current delivered to a specific region of the brain. We used a thresholding procedure in which the amount of current required for the animal to feel a rewarding effect can be determined from day to day. This procedure has been used by many laboratories over decades to show that treatments that make the animal feel good (such as an injection of methamphetamine) lower reward thresholds whereas conditions that make the animal feel bad (such as drug withdrawal in a dependent rat) lead to increased reward thresholds. Our study found that thresholds were increased merely by being placed in a hot environment (these data are all relative to individual thresholds from a 24 °C uninjected test session). Under Cold conditions, a 2.5 mg/kg MDMA, i.p., injection reduced reward thresholds in a manner consistent with the effects of methamphetamine, MDPV or mephedrone (Nguyen et al, 2016). Under Hot conditions, the same MDMA dose only returned reward thresholds to a baseline established under 24 °C without producing a pro-reward effect.

 

This ICSS experiment supports an interpretation of increased MDMA self-administration under high ambient temperature conditions as a normalization of negative affect, rather than an enhancement of the positive, feel-good subjective effects of MDMA.

Advertisements

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at WordPress.com.

%d bloggers like this: