TL neuro

March 19, 2017

Vaccination against methamphetamine works in female rats

Filed under: Methamphetamine, Vaccines, Vape inhalation, Vapor Inhalation — mtaffe @ 9:32 am

We have shown that a vaccine designed to blunt the effects of methamphetamine works in male rats in two prior publications, summarized here and here. We have also had success showing that vaccines directed against the synthetic cathinones MDPV (“bathsalts”) and alpha-PVP (“flakka”) work to reduce the effects of those drugs. A brief video outlining the approach to generating vaccines that might be helpful for drug abused created by NIDA can be found here.

The following has recently been accepted for publication:

Nguyen, J.D., Bremer, P.T., Hwang, C.S., Vandewater, S.A., Collins, K.C., Creehan, K.M., Janda, K.D. and Taffe, M.A. Effective active vaccination against methamphetamine in female rats, Drug Alcohol Depend, 2017, 175:179-186. [Publisher Site] [PubMed]

In this study we show that an increase in the amount that female rats move around their cages after an injection of methamphetamine is reduced in the MH6-KLH vaccinated rats.

As you can see in the explainer video, the main principle of anti-drug vaccination is that antibodies can bind some of the drug molecules (methamphetamine in this case) in the bloodstream, thereby preventing them from getting into the brain. This capacity to retain methamphetamine is relatively fixed at a given point in the vaccine sequence, thus administering a sufficiently high dose can (should) overcome the protection.

In our data, the effects of the vaccine were dose dependent. This is Figure 4 from the paper which depicts locomotor activity rates (counts per minute) in the MH6-KLH and KLH groups in the first and second hours after injection of methamphetamine in three doses [Significant differences from the Vehicle and 0.25 mg/kg within Group and Hour are indicated by §, from Vehicle (only) by # and from the 0.5 mg/kg condition by &. ]. There is a dose-dependent increase in activity rate compared with the vehicle injection condition. With respect to the active vaccination group, complete protection was found at the 0.25 mg/kg dose and partial protection at 0.5 mg/kg compared with the KLH group; the two groups were about the same after 1.0 mg/kg was injected. This further enhances our ability to interpret these data as a specific effect of the vaccination and to determine where the threshold for effective protection may lie.

There was another finding in this study which was slightly disappointing in terms of the vaccine study but greatly enhanced our understanding of another thing that we have been working on, namely vapor inhalation techniques to deliver drugs to rats for various research purposes. Most specifically we showed that e-cigarette type vapor inhalation of methamphetamine (and MDPV and mephedrone) increases the activity of male rats to a similar extent as it does when injected (blogpost overview). We used this model in the present study as well and confirmed that just as with male rats, the female rats activity in the cage was increased after vapor inhalation of methamphetamine to about the same extent as after the injected doses. Therefore up to this point in time we were assuming that the dose delivered to the rat was approximately similar when similar behavioral results were produced.

Unfortunately there was no difference in the effects of inhaled methamphetamine across the vaccinated and control groups of rats. We originally interpreted this as potentially a difference in the rate of drug penetration into the brain which minimized the ability of the vaccine-generated antibodies to prevent locomotor effects.

Upon reviewer request we then examined the blood levels of methamphetamine after injection (0.25, 1.0 mg/kg, i.p.) and the inhalation condition in a different group of unvaccinated female rats. We found that methamphetamine was about ten times higher in the blood after inhalation versus injection in this new study. This of course explains why the vaccinated group was not protected, i.e., the dose under inhalation was far past the ability of the antibodies to sequester in the bloodstream.

The curious thing is still why a similar level of locomotor activity was produced at the 10-fold difference in methamphetamine levels. Very likely this is due to the rate at which drug is delivered to the animal- in our inhalation model this takes place over 30 minutes whereas an injection takes seconds. Obviously one of our next avenues of research is to better determine the way that drug levels increase in the blood during vapor inhalation.

May 31, 2016

Inhalation model for evaluation of e-cigarette based delivery of THC

Filed under: Cannabis, E-cigarettes, Vape inhalation — mtaffe @ 11:13 am

Our interest in developing inhalation techniques for delivering cannabinoids, most especially the primary active constituent Δ9-tetrahydrocannabinol (THC), to rats arose from the realization that increasing numbers of people were using non-combusted methods for inhalation. When we started this project there were no studies using a Volcano type or e-cigarette type of system to deliver THC to rodents. Of course the majority of cannabis consumption has always been via smoke inhalation and there have been a few prior studies in laboratory models, primarily from the Lichtman laboratory. Our focus was therefore on the non-combustible techniques stemming from the evidence of personal acquaintance reports, a plethora of Web sites advertising methods, an emerging literature showing human practices (Giroud et al, 2015, Morean et al, 2015) and from suggestions that e-cigarette delivery may offer a safer alternative for medical cannabis consumers (Varlet et al, 2016).

The following has been recently accepted for publication in Neuropharmacology.
Inhaled delivery of Δ9-tetrahydrocannabinol (THC) to rats by e-cigarette vapor technology. Jacques D. Nguyen1, Shawn M. Aarde1, Sophia A. Vandewater1, Yanabel Grant1, David G. Stouffer1, Loren H. Parsons1, Maury Cole2 and Michael A. Taffe1
1Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla, CA, USA
2La Jolla Alcohol Research, Inc; La Jolla CA, USA

Schematic of the inhalation chamber

Schematic of the inhalation chamber

Our exposure model for this study involved a standard sized rat housing chamber with a sealed lid- these are commercially available for a variety of purposes. The chamber was plumbed for regulated airflow and incorporated the ability to deliver and exhaust the vapor from an e-cigarette type device. We tried a number of commercial tanks in this study, one specific example is the Protank 3 Atomizer by Kanger Tech. The overall approach for delivery to rodents is under patent to La Jolla Alcohol Research, Inc which has been instrumental in developing the equipment for our studies. This collaboration has resulted in a number of studies so far, this one is the first to be published. The company has also recently been awarded an SBIR Phase II Grant (R44 DA041967) to further develop and enhance commercialization of the device.

Dosing control was managed in this system with the manipulation of a number of variables. One of the major goals of this study was to determine how the dose delivered to the animal might be regulated by altering these vaping parameters. The concentration off the drug (in this case Δ9-tetrahydrocannabinol (THC) may be altered in the propylene glycol (PG) vehicle (aka “e-juice”)- our standard condition for this study was 200 mg/mL but effects from 25-100 mg/mL were also explored and showed a concentration-dependent effect when the puffing and inhalation duration was held constant. The puffing regimen and duration of inhalation exposure can be altered as well. In most of our studies we delivered 10-s vapor puffs with 2-s intervals between them every 5 minutes for durations of 10-40 min (approximately 0.125 ml was used in a 40 min exposure session). This study established that for a given THC concentration in the vehicle, the duration over which animals were exposed could produce graded effects consistent with a dose-dependent pattern.

Mean (N=8; ±SEM) temperature response to THC inhalation for 10, 20 or 30 min in 5 min intervals. A significant difference from both the baseline and the other exposure conditions is indicated by the open symbols and from the 10 min condition by the shaded symbols.

Mean (N=8; ±SEM) temperature response to THC vapor inhalation for 10, 20 or 30 min in 5 min intervals. A significant difference from both the baseline and the other exposure conditions is indicated by the open symbols and from the 10 min condition by shaded symbols.

This first figure depicts THC-induced reductions in body temperature produced by THC inhalation for 10-30 minutes in male rats, using a radiotelemetry system for reporting temperature every 5 minutes. The figure depicting this experiment in the paper depicts 30 min averages but I really like this version so I’m including it here. [For those concerned with statistics, see below.] The points to the left indicate a pre-inhalation baseline interval in the telemetry recording chambers. There is a break in the series because we didn’t record them during vapor inhalation (see our SFN 2014 poster presentation for a pilot study recording during inhalation). The main point here is that 10 min of inhalation doesn’t change body temperature, 30 min has a major hypothermic effect and 20 min produces an intermediate effect. Thus, this system is able to produce dose-dependent effects that are so helpful for interpretation of behavioral pharmacology studies. We show in the paper that i.p. injection of 10-20 mg/kg THC produces a temperature nadir similar to that produced by 20-30 min of inhalation (see a blog post on our 2015 paper on temperature responses to injected THC for comparison). Our telemetry measure of locomotion did not show any suppression in this experiment but we do show a suppression of activity in both males and females in Figure 2 of the paper. There was some evidence that female rats are more sensitive to the hypothermia induced by, e.g., THC 50 mg/mL for 30 min in this study, likely because of their lower bodyweight compared with the male rats.

Mean tail-flick latency measured following 20 min of exposure with pre-treatment with SR141716 (SR; 4 mg/kg, i.p.) or Vehicle (N=8). Significant differences compared with respective vehicle condition are indicated by *, differences from SR+THC vapor by #.

Mean tail-flick latency measured following 20 min of exposure with pre-treatment with SR141716 (SR; 4 mg/kg, i.p.) or Vehicle (N=8). Significant differences compared with respective vehicle condition are indicated by *, differences from SR+THC vapor by #.

One of the major tests of cannabinoid activity in a rodent is a decrease in nociception. The ability to sense a noxious stimulus was tested by placing the tail in a 52°C water bath and timing the latency for it to flick it out. The experiment in the figure depicts a study in which the animals were exposed to PG or 200 mg/mL THC for 20 min with and without prior treatment with the cannabinoid 1 receptor antagonist SR141716 (Rimonabant; 4 mg/kg, i.p.). This shows that THC inhalation extends the time for the animal to flick its tail out of the warm water and that this effect is blocked with the antagonist pre-treatment. Although not shown here, the magnitude of the latency change caused by vapor inhalation of THC was the same as that produced by a 10 mg/kg THC i.p. injection. This comparability of the effect of inhaled versus injected THC was also highly consistent with data we generated showing that blood concentrations of THC were very similar when observed 30 min after THC (200 mg/mL) inhalation or 30 min after 10 mg/kg, i.p. injection.

In summary, we’ve created a new model for evaluating inhaled delivery of THC to rats via an e-cigarette type of method. We’ve found significant effects on three of the four traditional measures (Tetrad Test) of cannabinoid activity in a rodent- hypothermia, hypolocomotion and antinociception (the fourth, catalepsy, was not assessed). Effects were of comparable magnitude to those produced by intraperitoneal injection, allowing these data to be placed in context with prior studies using injection delivery of THC. There are several advantages of this model, most pertinently the more rapid timecourse of effects compared to what is produced with an i.p. injection.

Jacques D. Nguyen, Shawn M. Aarde, Sophia A. Vandewater, Yanabel Grant, David G. Stouffer, Loren H. Parsons, Maury Cole and Michael A. Taffe. Inhaled delivery of Δ9-tetrahydrocannabinol (THC) to rats by e-cigarette vapor technology, 2016, Neuropharmacology, in press. DOI: 10.1016/j.neuropharm.2016.05.021 [PubMed]

Funding and Disclosures for this paper: This work was funded by support from the United States Public Health Service National Institutes of Health (R01 DA024105, R01 DA035281 and R44 DA041967) which had no direct input on the design, conduct, analysis or publication of the findings. Development of the apparatus was supported by La Jolla Alcohol Research, Inc and MC is inventor on a patent for this device. SAV consults for La Jolla Alcohol Research, Inc.

[Stats for body temperature figure: The ANOVA of the five minute temperature intervals (including three baseline samples, -15 to -5, and 40-180 min following initiation of vapor) confirmed main effects of Time post-initiation [F (32, 224) = 38.36; P < 0.0001], Duration of vapor exposure [F (2, 14) = 38.66; P < 0.0001] and the interaction of factors [F (64, 448) = 16.64; P < 0.0001].
The Tukey post-hoc test confirmed significant temperature reductions after 20 (40-70 min post-vapor initiation) or 30 min (40-155 min post-vapor initiation) of vapor exposure to THC compared with each of three baseline samples. Furthermore, the post-hoc test confirmed that temperature after all three exposure durations differed significantly from each other from 40-150 and 160-165 min following vapor initiation. Significant differences in temperature between 10 and 30 min vapor exposures were confirmed for the entire post-vapor duration.]

July 18, 2015

Prevalence of E-cigarette use in 8th-12th graders

Filed under: E-cigarettes, Tobacco/Nicotine, Vape inhalation — mtaffe @ 5:47 pm

The Monitoring the Future survey added electronic cigarettes to its survey for the first time in 2014. The summary tables and figures and full monographs are available for the clicking.

Results show show that 17.1% of high school seniors reported using an E-cigarette at least once in the past 30 days. Rates were almost as high for 10th grade students (16.2%) and somewhat lower for 8th graders (8.7%).

To put this in perspective the 30 day prevalence for cigarettes was 13.6% for 12th graders, 7.2% for 10th and 4.0% for 8th graders. So twice as many 8th and 10th grade students have at least tried an E-cigarette as have tried a regular cigarette.

6.8% of 12th grade students report smoking one or more cigarettes per day. The rate for 10th graders is only 3.3% and 1.4% for 8th graders. One way to put together the E-cigarette/cigarette ratios from the three grade ranges is to observe that daily smoking is more likely with older students. These individuals may either have less need to resort to E-cigarettes for availability reasons or they may reflect the fact that E-cigarettes may not produce good nicotine levels until smokers are motivated to learn to use them.

For those that are unfamiliar with drug use rates in these grade levels, E-cigarette use is high. The percentage of respondents who used any illicit drug other than marijuana in the past 30 days was 7.7%, 5.6% and 3.3% for 12th, 10th and 8th graders respectively. Marijuana rates were 21.2%, 16.6% and 6.5%. The 30 day rates for 12th graders for individual drugs of interest are much lower: 1.0% cocaine or LSD, 1.4% Ecstasy, 0.4% heroin or PCP, 6.4% for any prescription drug.

Since this was only added to the MtF survey recently, we cannot make much from a single point estimate of E-cigarette use. Maybe this was the peak of a new fad, maybe the beginning of a sustained trend.

What we do know is that substantial numbers of adolescents are sampling the use of these devices.

November 13, 2014

SfN 2014 Presentation: Vape drug delivery

We will present a poster describing our efforts to develop technologies for the intrapulmonary (inhaled) delivery of psychoactive drugs at the 2004 meeting of the Society for Neuroscience.

Abstract 810.04 on Board AA05: Development and validation of a device for the intrapulmonary delivery of cannabinoids and stimulants to rats .
Authors: M. A. TAFFE, S. M. AARDE, M. COLE;
Cmte Neurobio. of Addictive Disorders, The Scripps Res. Inst., LA JOLLA, CA;

The presentation time is Wednesday, Nov 19, 2014, 1:00 PM – 5:00 PM.

Abstract Text:

The recent popularization of non-combustible methods for intrapulmonary delivery of psychoactive drugs to humans (Vape, Volcano, e-cigarette, etc) has stimulated interest in the intrapulmonary administration models for rodent studies. We have designed a sealed rodent chamber, with a well regulated air flow, that is suitable for the controlled exposure of rats to psychoactive substances. Use of e-cigarette type delivery systems was found to afford excellent dosing control for this purpose. Studies were conducted in male rats to verify the in vivo efficacy of drug delivery. Implantable radiotelemetry methods were used to demonstrate that a 20 min exposure to [[unable to display character: ∆]]9-tetrahydrocannabinol (THC), or the CB1 receptor full agonist JWH-018, produces a robust hypothermia. The temperature nadir was reached within 40 min of exposure, was of comparable magnitude to that found after 30 mg/kg THC or 1.1 mg/kg JWH-018, i.p. and had resolved within 3 hours compared with a 6 hour time course following injection. Studies also demonstrated that 30 min of intrapulmonary exposure to methamphetamine (MA) significantly increased home cage locomotor behavior for up to 2 hrs. A final study showed that a 30 min intrapulmonary exposure to MA reduced drug intake during the loading phase of intravenous self-administration of MA. Finally, it is shown that rats will nosepoke for the delivery of MA vapor. These studies show that an electronic cigarette type delivery system can be successfully used to model intrapulmonary drug delivery in rats. These techniques will be of increasing utility as recreational users continue to adopt “vaping” for the administration of psychtropic drugs.

SrN2014-teaserFigureDisclosures: M.A. Taffe: None. S.M. Aarde: None. M. Cole: E. Ownership Interest (stock, stock options, royalty, receipt of intellectual property rights/patent holder, excluding diversified mutual funds); La Jolla Alcohol Research, Inc..

This work was supported by NIH grants DA035281 and DA024105.

This figure is small preview of the data that we will be presenting. The figure depicts body temperature responses to 20 minutes of Vape-exposure to THC and the synthetic cannabinoid JWH-018 (upper panel) and locomotor activity responses to 30 minutes of Vape-exposure to methamphetamine (lower panel) in a group (N=7) male rats. In both panels there are comparison data for a session in which animals were just in normal cages with no drug intervention (No Chamber) and another session in the inhalation chamber in which animals were exposed to the Vape delivery vehicle without any drug in it (Vehicle). As you can see, we were successful in delivering active doses of the drugs, each of which had class-specific effects, i.e. cannabinoid hypothermia and stimulant hyperlocomotion.

Create a free website or blog at